Unique observation of a long-lasting meteor trail of about half an hour duration is described. The trail resulted from a burning meteor from the Leonid storm flux in the middle latitudes over eastern Siberia. We describe three-dimensional morphological characteristics of both the meteor and the long-lasting trail using data from wide-angle CCD cameras. Additionally, we present the meteor and the trail radiolocation characteristics obtained with a meteor radar and ionosonde. The background dynamics of the upper atmosphere at the height where the long-lasting trail developed were observed using data from the meteor radar and Fabry-Perot interferometer. The obtained results allowed the conclusion that the dynamics of a long-lasting trail are conditioned by the wind. However, during the first minutes of trail development, it is possible that a high-speed component is present, resulting from explosion of the meteor body in the atmosphere. A primitive spectral analysis of the long-lasting trail's optical emissions and earlier studies point to hydroxyl molecules as a possible source of the glow. We believe the enhanced hydroxyl emission could be related to interaction of excited O(1D) oxygen atoms with meteor body water in the Earth's upper atmosphere.