Osteoporosis is a prevalent age-related disease that poses a significant public health concern as the population continues to age. While current treatments have shown some therapeutic benefits, their long-term clinical efficacy is limited by a lack of stable curative effects and significant adverse effects. Traditional Chinese Medicine has gained attention due to its positive curative effects and fewer side effects. Liuwei Dihuang Pill has been found to enhance bone mineral density in patients with osteoporosis and rats, but the underlying mechanism is not yet clear. To shed more light on this problem, this study aims to explore the pharmacological mechanism of Liuwei Dihuang Pill in treating osteoporosis using network pharmacology and molecular docking. The findings indicate that Liuwei Dihuang Pills treat osteoporosis through various targets and channels. Specifically, it mainly involves TNF, IL17, and HIF-1 signaling pathways and helps regulate biological processes such as angiogenesis, apoptosis, hypoxia, and gene expression. Furthermore, molecular docking demonstrates excellent binding properties between the drug components and key targets. Therefore, this study offers a theoretical foundation for understanding the pharmacological mechanism and clinical application of Liuwei Dihuang Pills in treating osteoporosis more comprehensively.