Liquid droplets move readily under the influence of surface tension gradients on their substrates. Substrates decorated with parallel microgrooves, or striations, presenting the advantage of homogeneous chemical properties yet varying the topological characteristics on either side of a straight-line boundary are considered in this study. The basic type of geometry consists of hydrophobic micro-striations/rails perpendicular to the boundary, with the systematic variation of the width to spacing ratio, thus changing the solid-liquid contact fraction and inducing a well-defined wettability contrast across the boundary. Droplets in the Cassie-Baxter state, straddling the boundary, move along the wettability contrast in order to reduce the overall surface free energy. Results show the importance of average solid fraction and contrasting fraction in a wide range for given geometries across the boundary on droplet motion. A unified criterion for contrasting striated surfaces, which describes the displacement and the velocity of the droplets, is suggested, providing guidelines for droplet manipulation on microstriated/railed surfaces.