Abstract. This paper reviews the work that has been done at Fraunhofer IOSB (and its predecessor institutes) in the past ten years in the area of laser gated-viewing (GV) in the short-wavelength infrared (SWIR) band. Experimental system demonstrators in various configurations have been built up to show the potential for different applications and to investigate specific topics. The wavelength of the pulsed illumination laser is 1.57 μm and lies in the invisible, retina-safe region allowing much higher pulse energies than for wavelengths in the visible or near-infrared band concerning eye safety. All systems built up, consist of gated Intevac LIVAR ® cameras based on EBCCD/EBCMOS detectors sensitive in the SWIR band. This review comprises military and civilian applications in maritime and land domain-in particular vision enhancement in bad visibility, long-range applications, silhouette imaging, 3-D imaging by sliding gates and slope method, bistatic GV imaging, and looking through windows. In addition, theoretical studies that were conducted-e.g., estimating 3-D accuracy or modeling range performance-are presented. Finally, an outlook for future work in the area of SWIR laser GV at Fraunhofer IOSB is given. 1 Introduction A gated-viewing (GV) system consists of a pulsed laser illuminator and a synchronizable GV camera. After the laser pulse is emitted, the GV camera waits a predefined delay time until the detector elements integrate all photons that arrive within a very short integration time. Only laser photons that arrive from the corresponding range gate are collected; the fore-and the background are suppressed. The camera delay time determines the gate position and the integration time determines the gate length. The result is a rangegated image with a high target/background contrast as it can be seen in the right image of Fig. 1 for a vehicle at a distance of 480 m and a laser wavelength of 1.57 μm. For comparison, also a nongated, passive image of the vehicle in the wavelength region between 950 and 1650 nm in the shortwavelength infrared (SWIR: 1 to 3 μm) is shown at the left.In Sec. 2, a brief historical overview of some conducted GV experiments in the past 40 years at Fraunhofer IOSB and its predecessor research institutes is given. The main Sec. 3 is divided into 11 sections giving a broad overview of the performed SWIR laser GV activities.