Abstract. This article presents several state-of-the-art Monte Carlo methods for simulating and estimating rare events. A rare event occurs with a very small probability, but its occurrence is important enough to justify an accurate study. Rare event simulation calls for specific techniques to speed up standard Monte Carlo sampling, which requires unacceptably large sample sizes to observe the event a sufficient number of times. Among these variance reduction methods, the most prominent ones are Importance Sampling (IS) and Multilevel Splitting, also known as Subset Simulation. This paper offers some recent results on both aspects, motivated by theoretical issues as well as by applied problems.
Résumé. Cet article propose un état de l'art de plusieurs méthodes Monte Carlo pour l'estimationd'événements rares. Un événement rare est par définition un événement de probabilité très faible, mais d'importance pratique cruciale, ce qui justifie une étude précise. La méthode Monte Carlo classique s'avérant prohibitivement coûteuse, il importe d'appliquer des techniques spécifiques pour leur estimation. Celles-ci se divisent en deux grandes catégories : échantillonnage préférentiel d'un côté, méthodes multi-niveaux de l'autre. Nous présentons ici quelques résultats récents dans ces domaines, motivés par des considérations tant pratiques que théoriques.