Hereditary retinal blindness is caused by mutations in genes expressed in photoreceptors or retinal pigment epithelium. Gene therapy in mouse and dog models of a primary retinal pigment epithelium disease has already been translated to human clinical trials with encouraging results. Treatment for common primary photoreceptor blindness, however, has not yet moved from proof of concept to the clinic. We evaluated gene augmentation therapy in two blinding canine photoreceptor diseases that model the common X-linked form of retinitis pigmentosa caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene, which encodes a photoreceptor ciliary protein, and provide evidence that the therapy is effective. After subretinal injections of adeno-associated virus-2/5-vectored human RPGR with human IRBP or GRK1 promoters, in vivo imaging showed preserved photoreceptor nuclei and inner/ outer segments that were limited to treated areas. Both rod and cone photoreceptor function were greater in treated (three of four) than in control eyes. Histopathology indicated normal photoreceptor structure and reversal of opsin mislocalization in treated areas expressing human RPGR protein in rods and cones. Postreceptoral remodeling was also corrected: there was reversal of bipolar cell dendrite retraction evident with bipolar cell markers and preservation of outer plexiform layer thickness. Efficacy of gene therapy in these large animal models of X-linked retinitis pigmentosa provides a path for translation to human treatment.retina | retinal degeneration P hotoreceptors function cooperatively with the retinal pigment epithelium (RPE) to optimize photon catch and generate signals that are transmitted to higher vision centers and perceived as a visual image. Disruption of the visual process in the retinal photoreceptors can result in blindness. Genetic defects in the retina cause substantial numbers of sight-impairing disorders by a multitude of mechanisms (1, 2). These genetic diseases were classically considered incurable, but the past few years have witnessed a new era of retinal therapeutics in which successful gene therapy of an animal model of one blinding human disease (3) was followed by stepwise translation to the clinic. The RPE65 form of Leber congenital amaurosis, due to a biochemical blockade of the retinoid cycle in the RPE, was the first and remains the only blinding genetic disease to be successfully treated in humans (reviewed in ref. 4).The next level of challenge is to initiate treatment for the majority of blinding retinal disorders in which the genetic flaws are primarily in the photoreceptors. Successful targeting of therapeutic vectors to mutant photoreceptors would be required to restore function and preserve structure. Among photoreceptor dystrophies, the X-linked forms of retinitis pigmentosa (XLRP) are one of the most common causes of severe vision loss (5). More than 25 y ago, the genetic loci were identified (6), and discovery of the underlying gene defects followed (7,8). Mutations in the reti...