The accurate estimation of leaf hydraulic conductance (Kleaf) is important for revealing leaf physiology characteristics and function. However, there are some uncertain influencing factors in Kleaf measurement by using evaporation flux method (EFM), a widely used method. In this study, we investigated the potential impacts of plant sampling method, measurement setup, environmental factors, recording instrument, and transpiration steady status identification on Kleaf estimation. Our results indicated that the sampling and rehydration time, the small gravity pressure on leaf, and degassing treatment had limited effects on Kleaf values. Transpiration rate (E) was significantly affected by multiple environmental factors including airflow around leaf, light intensity, and leaf temperature. Kleaf values decreased by 40% from 1000 to 500 µmol m-2 s-1 light intensities and by 15.1% from 27 to 37 oC. In addition, the accurate flow rate (F) steady state identification and the leaf water potential measurement were important for Kleaf estimation. Based on the analysis of influencing factors, we provided a format for reporting the details of the EFM-based Kleaf measurement methods and metadata that future studies could interpret the results in method issue.