“…Positive effects in performance have also been noted in incremental tests (Kemmler et al, 2009 ; Sear et al, 2010 ), repeated sprinting (Higgins et al, 2009 ; Born et al, 2014 ), and jumping height following submaximal exercise (Rugg and Sternlicht, 2013 ; Bieuzen et al, 2014 ) or after a 10 km run (Ali et al, 2011 ). Conversely, other studies have reported no measurable effect on limb volume (Areces et al, 2015 ), fractional oxygen utilization (Kemmler et al, 2009 ; Wahl et al, 2011 ; Born et al, 2014 ; Priego Quesada et al, 2015 ; Stickford et al, 2015 ), muscle oxygenation or blood flow (Vercruyssen et al, 2012 ; Born et al, 2014 ), heart rate or indicators of central cardiovascular adaptations (Ali et al, 2007 ; Sperlich et al, 2011 ; Wahl et al, 2011 ; Vercruyssen et al, 2012 ; Born et al, 2014 ; Priego Quesada et al, 2015 ), lactate or exercise metabolite removal (Kemmler et al, 2009 ; Ali et al, 2010 ; Sperlich et al, 2011 ; Wahl et al, 2011 ; Vercruyssen et al, 2012 ; Areces et al, 2015 ), ratings of perceived exertion (RPE) or DOMS (Ali et al, 2007 , 2010 ; Bovenschen et al, 2013 ; Areces et al, 2015 ; Priego Quesada et al, 2015 ), running economy and gait kinematics (Varela-Sanz et al, 2011 ; Stickford et al, 2015 ; Vercruyssen et al, 2016 ), maximal voluntary and evoked contractions (Vercruyssen et al, 2016 ), as well as performance in repeated sprinting (Duffield et al, 2008 ), or in running performed at maximal (Ali et al, 2007 ; Priego Quesada et al, 2015 ) and at sub-maximal exercise intensities (Ali et al, 2007 , 2011 ; Wahl et al, 2011 ; Vercruyssen et al, 2012 ; Priego Quesada et al, 2015 ). This abundant but heterogeneous literature may underline probable task-dependent ergogenic effects of the compression when used during exercise.…”