The variety of the observational appearance of young isolated neutron stars must find an explanation in the framework of some unifying approach. Nowadays it is believed that such scenario must include magnetic field decay, the possibility of magnetic field emergence on a time scale of 10 4 -10 5 yr, significant contribution of non-dipolar fields, and appropriate initial parameter distributions. We present our results on the initial spin period distribution, and suggest that inconsistencies between distributions derived by different methods for samples with different average ages can uncover field decay or/and emerging field. We describe a new method to probe the magnetic field decay in normal pulsars. The method is a modified pulsar current approach, where we study pulsar flow along the line of increasing characteristic age for constant field. Our calculations, performed with this method, can be fitted with an exponential decay for ages in the range of 8×10 4 -3.5×105 yr with a time scale of ∼ 5×10 5 yr. We discuss several issues related to the unifying scenario. At first, we note that the dichotomy, among local thermally emitting neutron stars, between normal pulsars and the Magnificent Seven remains unexplained. Then we discuss the role of high-mass X-ray binaries in the unification of neutron star evolution. We note, that such systems allow to check evolutionary effects on a time scale longer than what can be probed with normal pulsars alone. We conclude with a brief discussion of the importance of discovering old neutron stars accreting from the interstellar medium.