The control of arboviruses carried by Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) can be performed with tools that monitor and reduce the circulation of these vectors. Therefore, the efficiency of four types of traps in capturing A. aegypti and A. albopictus eggs and adults, with the biological product Vectobac WG®, was evaluated in the field. For this, 20 traps were installed in two locations, which were in the South (Londrina, Paraná) and North (Manaus, Amazonas) Regions of Brazil, from March to April 2017 and January to February 2018, respectively. The UELtrap-E and UELtrap-EA traps captured A. aegypti and A. albopictus eggs: 1703/1866 eggs in Londrina, and 10268/2149 eggs in Manaus, respectively, and presented high ovitraps positivity index (OPI) values (averages: 100%/100% in Londrina, and 100%/96% in Manaus, respectively); and high egg density index (EDI) values (averages: 68/75 in Londrina, and 411/89 in Manaus, respectively), so they had statistically superior efficiency to that of the CRtrap-E and CRtrap-EA traps in both regions, that captured less eggs and adults: 96/69 eggs in Londrina, and 1091/510 eggs in Manaus, respectively. Also presented lower OPI values (averages: 28%/4% in Londrina, and 88%/60% in Manaus, respectively); and lower EDI values (averages: 10.5/9 in Londrina, and 47/30 in Manaus, respectively). The capture ratios of Aedes adults in the UELtrap-EA and CRtrap-EA traps in Londrina and Manaus were 53.3%/29.5% and 0%/9.8%, respectively. UELtrap-E and UELtrap-EA can be adopted as efficient tools for Aedes monitoring due to their high sensitivity, low cost and ease of use.Author summaryAedes aegypti and Aedes albopictus are species of mosquitoes responsible for the transmission of several arboviruses that cause infections worldwide. However, there are still no effective and safe vaccines or medications to prevent or treat arboviruses transmitted by these vectors, except for yellow fever. Moreover, current methodologies for monitoring and controlling A. aegypti and A. albopictus are not fully effective, as evidenced by the increasing cases of the arbovirus transmitted by these mosquitoes or have incompatible costs with the socioeconomic conditions of a large number of people. Thus, the traps tested in this study can be used as more effective and economical tools for monitoring and controlling A. aegypti and A. albopictus, since they are made with low cost material and they showed high efficiency in the capture of eggs, evidenced by the high values of ovitraps positive index and eggs density index, besides that one of the models captured Aedes spp. adults in both regions where they were tested. Therefore, the traps have potential for reducing Aedes spp. eggs and adults in the environment and sensibility for determining the local infestation index, which can be reconciled with official government strategies for more accurate vector monitoring and control actions.