In the Amazonian atmosphere, the aerosol coarse mode comprises a complex, diverse, and variable mixture of bioaerosols emitted from the rain forest ecosystem, longrange transported Saharan dust (we use Sahara as shorthand for the dust source regions in Africa north of the Equator), marine aerosols from the Atlantic Ocean, and coarse smoke particles from deforestation fires. For the rain forest, the coarse mode particles are of significance with respect to biogeochemical and hydrological cycling, as well as ecology and biogeography. However, knowledge on the physicochemical and biological properties as well as the ecological role of the Amazonian coarse mode is still sparse. This study presents results from multi-year coarse mode measure-ments at the remote Amazon Tall Tower Observatory (ATTO) site. It combines online aerosol observations, selected remote sensing and modeling results, as well as dedicated coarse mode sampling and analysis. The focal points of this study are a systematic characterization of aerosol coarse mode abundance and properties in the Amazonian atmosphere as well as a detailed analysis of the frequent, pulse-wise intrusion of African long-range transport (LRT) aerosols (comprising Saharan dust and African biomass burning smoke) into the Amazon Basin.We find that, on a multi-year time scale, the Amazonian coarse mode maintains remarkably constant concentration levels (with 0.4 cm −3 and 4.0 µg m −3 in the wet vs. 1.2 cm −3