Glutamatergic dentate gyrus (DG) mossy cells (MCs) innervate the primary cell type, granule cells (GCs), and GABAergic neurons which inhibit GCs. Prior studies suggest that the net effect of MCs is mainly to inhibit GCs, leading one to question why direct excitation of GCs is often missed. We hypothesized that MCs do have excitatory effects, but each GC is only excited weakly, at least under most experimental conditions. To address this hypothesis, MC axons were stimulated optogenetically in slices. A brief optogenetic stimulus to MC axons in the inner molecular layer (IML) led to a short-latency field EPSP (fEPSP) in the IML, suggesting there was a direct excitatory effect on GCs. Population spikes were negligible however, consistent with weak excitation. FEPSPs reflected AMPA/NMDA receptor-mediated EPSPs in GCs. EPSPs reached threshold after GC depolarization or facilitating NMDA receptors. GABAA and GABAB receptor-mediated IPSPs often followed EPSPs. At the network level, an conditions. This view is consistent with a network where there is selective activation of GCs, optimal for a function of the DG that has received much attention: pattern separation (Leutgeb et al.