Visual neurons coordinate their responses in relation to the stimulus; however, the complex interplay between a stimulus and the functional dynamics of an assembly still eludes neuroscientists. To this aim, we recorded cell assemblies from multi-electrodes in the primary visual cortex of anaesthetized cats in response to randomly presented sine-wave drifting gratings whose orientation tilted in 22.5° steps. Cross-correlograms divulged the functional connections at all the tested orientations. We show that a cell-assembly discriminates between orientations by recruiting a 'salient' functional network at every presented orientation, wherein, the connections and their strengths (peak-probabilities in the cross-correlogram) change from one orientation to another. Within these assemblies, closely tuned neurons exhibited increased connectivity and connection-strengths than differently tuned neurons. Minimal connectivity between untuned neurons suggests the significance of neuronal selectivity in assemblies. This study reflects upon the dynamics of functional connectivity, and brings to the fore the importance of a 'signature' functional network in an assembly that is strictly related to a specific stimulus. Apparently, it points to the fact that an assembly is the major 'functional unit' of information processing in cortical circuits, rather than the individual neurons.