The identification method revealed asymmetric wavelets of dynamics, as fractal quanta of the behavior of the surface air layer at a height of 2 m, according to the average monthly temperature at four weather stations in India (Srinagar, Jolhpur, New Delhi and Guvahati). For Srinagar station, the maximum for all years is observed in July, for Jolhpur and New Delhi stations it shifts to June, and for Guvahati it shifts to August. With a high correlation coefficient of 0.9659, 0.8640 and 0.8687, a three-factor model of the form was obtained. The altitude, longitude and latitude of the station are given sequentially. The hottest month for Srinagar over a period of 130 years is in July. At the same time, the temperature increased from 23.4 °C to 24.2 °C (by 3.31%). A noticeable decrease in the intensity of heat flows in June occurred at Jolhpur (over 125 years, a decrease from 36.2 °C to 33.3 °C, or by 8.71%) and New Delhi (over 90 years, a decrease from 35.1 °C to 32.4 °C, or by 7.69%). For almost 120 years, Guvahati has experienced complex climate changes: In 1902, the hottest month was July, but in 2021 it has shifted to August. The increase in temperature at various stations is considered. At Srinagar station in 2021, compared to 1892, temperatures increased in June, September and October. Guvahati has a 120-year increase in December, January, March and April. Temperatures have risen in February, March and April at Jolhpur in 125 years, but have risen in February and March at New Delhi Station in 90 years. Despite the presence of tropical evergreen forests, the area around Guvahati Station is expected to experience strong warming.