We report on the high-precision timing of 42 radio millisecond pulsars (MSPs) observed by the European Pulsar Timing Array (EPTA). This EPTA Data Release 1.0 extends up to mid-2014 and baselines range from 7-18 years. It forms the basis for the stochastic gravitationalwave background, anisotropic background, and continuous-wave limits recently presented by the EPTA elsewhere. The Bayesian timing analysis performed with TempoNest yields the detection of several new parameters: seven parallaxes, nine proper motions and, in the case of six binary pulsars, an apparent change of the semi-major axis. We find the NE2001 Galactic electron density model to be a better match to our parallax distances (after correction from the Lutz-Kelker bias) than the M2 and M3 models by Schnitzeler (2012). However, we measure an average uncertainty of 80% (fractional) for NE2001, three times larger than what is typically assumed in the literature. We revisit the transverse velocity distribution for a set of 19 isolated and 57 binary MSPs and find no statistical difference between these two populations. We detect Shapiro delay in the timing residuals of PSRs J1600−3053 and J1918−0642, implying pulsar and companion masses m p = 1.22 +0.5 −0.35 M ⊙ , m c = 0.21 +0.06 −0.04 M ⊙ and m p = 1.25 +0.6 −0.4 M ⊙ , m c = 0.23 +0.07 −0.05 M ⊙ , respectively. Finally, we use the measurement of the orbital period derivative to set a stringent constraint on the distance to PSRs J1012+5307 and J1909−3744, and set limits on the longitude of ascending node through the search of the annual-orbital parallax for PSRs J1600−3053 and J1909−3744.