Ticks (Acari: Ixodida) are blood-sucking arthropods globally recognized as vectors of numerous diseases. They are primarily responsible for the transmission of various pathogens, including viruses, rickettsiae, and blood parasites of animals. Ticks are second to mosquitoes in terms of disease transmission to humans. The continuous emergence of tick-borne diseases and acaricide resistance of ticks necessitates the development of new and more effective control agents and strategies; therefore, understanding of different aspects of tick biology and their interaction with pathogens is very crucial in developing effective control strategies. RNA interference (RNAi) has been widely used in the area of tick research as a versatile reverse genetic tool to elucidate the functions of various tick proteins. During the past decade, numerous studies on ticks utilized RNAi to evaluate potentially key tick proteins involved in blood feeding, reproduction, evasion of host immune response, interaction with pathogens, and pathogen transmission that may be targeted for tick and pathogen control. This chapter reviewed the application of RNAi in tick research over the past decade, focusing on the impact of this technique in the advancement of knowledge on tick and pathogen biology.