ObjectiveCirculating microRNAs show cross-sectional associations with overweight and obesity. Few studies provided data to differentiate between a snapshot perspective on these associations versus how microRNAs characterize prodromal risk from disease pathology and complications. This study assessed longitudinal relationships between circulating microRNAs and weight at multiple time-points in the Diabetes Prevention Program trial.Research design and methodsA subset of participants (n=150) from the Diabetes Prevention Program were included. MicroRNAs were measured from banked plasma using a Fireplex Assay. We used generalized linear mixed models to evaluate relationships between microRNAs and changes in weight at baseline, year-1, and year-2. Logistic regression was used to evaluate whether microRNAs at baseline were associated with weight change after 2 years.ResultsIn fully adjusted models that included relevant covariates, seven miRs (i.e., miR-126, miR-15a, miR-192, miR-23a, and miR-27a) were statistically associated with weight over 2 years. MiR-197 and miR-320a remained significant after adjustment for multiple comparisons. Baseline levels of let-7f, miR-17, and miR-320c were significantly associated with 3% weight loss after 2 years in fully adjusted models.DiscussionThis study provided evidence for longitudinal relationships between circulating microRNAs and weight. Because microRNAs characterize the combined effects of genetic determinants and responses to behavioral determinants, they may provide insights about the etiology of overweight and obesity in the context or risk for common, complex diseases. Additional studies are needed to validate the potential genes and biological pathways that might be targeted by these microRNA biomarkers and have mechanistic implications for weight loss and disease prevention.