We develop a low-temperature theory of quasi-elastic secondary emission from a semiconductor quantum dot, the electronic subsystem of which is resonant with the confined longitudinal-optical (LO) phonon modes. Our theory employs a generalized model for renormalization of the quantum dot's energy spectrum, which is induced by the polar electron-phonon interaction. The model takes into account the degeneration of electronic states and allows for several LO-phonon modes to be involved in the vibrational resonance. We give solutions to three fundamental problems of energy-spectrum renormalization--arising if one, two, or three LO-phonon modes resonantly couple a pair of electronic states--and discuss the most general problem of this kind that admits an analytical solution. With these results, we solve the generalized master equation for the reduced density matrix, in order to derive an expression for the differential cross section of secondary emission from a single quantum dot. The obtained expression is then analyzed to establish the basics of optical spectroscopy for measuring fundamental parameters of the quantum dot's polaron-like states.