We report on NuSTAR observations of transient pulsations in the neutron star X-ray binary SMC X-1. The transition from non-pulsing to pulsing states was not accompanied by a large change in flux. Instead, both pulsing and non-pulsing states were observed in a single observation during the low-flux super-orbital state. During the high-state, we measure a pulse period of P = 0.70117(9) s at T ref = 56145 MJD. Spectral analysis during non-pulsing and pulsing states reveals that the observations can be consistently modeled by an absorbed power law with a phenomenological cutoff resembling a Fermi-Dirac distribution, or by a partially obscured cutoff power law. The shapes of the underlying continua show little variability between epochs, while the covering fraction and column density vary between super-orbital states. The strength of pulsations also varies, leading us to infer that the absence and reemergence of pulsations are related to changing obscuration, such as by a warped accretion disk. SMC X-1 is accreting near or above its Eddington limit, reaching an unabsorbed X-ray luminosity of L X (2 − 10 keV) ≈ 5 × 10 38 erg s −1 . This suggests that SMC X-1 may be a useful local analog to ultraluminous X-ray pulsars (ULXPs), which likewise exhibit strong variability in their pulsed fractions, as well as flux variability on similar timescales. In particular, the gradual pulse turn-on which has been observed in M82 X-2 is similar to the behavior we observe in SMC X-1. Thus we propose that pulse fraction variability of ULXPs may also be due to variable obscuration.