Lifetime data is often right-censored. Recent literature on the Gini index estimation with censored data focuses on independent censoring. However, the censoring mechanism is likely to be dependent censoring in practice. This paper proposes two estimators of the Gini index under independent censoring and covariate-dependent censoring, respectively. The proposed estimators are consistent and asymptotically normal. We also evaluate the performance of our estimators in finite samples through Monte Carlo simulations. Finally, the proposed methods are applied to real data.