Key performance indicators (KPI) are essential to decision-making in an organization, but the approach to analysis and composition used in the formulation of the KPIs can lead to errors. Analysis based only on averages does not allow for discriminating between variations that are natural to the process or special cases which require investigation. The use of control charts can identify this differentiation. However, when several charts are presented encompassing different measurement units and scales, systemic interpretation can be impaired.To assist in this interpretation, this research study aimed at proposing a method to facilitate the analysis of control charts when multiple indicators are employed in the monitoring of agricultural operations. Based on the data obtained over 26 weeks from a mechanized sugarcane (Saccharum officinarum L.) harvesting front, six indicators were defined and analyzed through individual control charts and, systemically, through a standardized group control chart. Resultsshow that the points identified as being outside the control zone (special causes of variation) according to the standardized group control chart were the same as those identified by the six individual charts, which demonstrates the potential of this method to summarize the information with no loss of quality of analysis.