2008
DOI: 10.1007/s12243-008-0079-5
|View full text |Cite
|
Sign up to set email alerts
|

Lossy compression of volumetric medical images with 3D dead-zone lattice vector quantization

Abstract: This paper presents a new lossy coding scheme based on 3D Wavelet Transform and Lattice Vector Quantization for volumetric medical images. The main contribution of this work is the design of a new codebook enclosing a multidimensional dead zone during the quantization step which enables to better account correlations between neighbour voxels. Furthermore, we present an efficient rate-distortion model to simplify the bit allocation procedure for our intra-band scheme. Our algorithm has been evaluated on several… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
8
0
1

Year Published

2009
2009
2021
2021

Publication Types

Select...
4
2
1

Relationship

0
7

Authors

Journals

citations
Cited by 14 publications
(10 citation statements)
references
References 12 publications
(17 reference statements)
1
8
0
1
Order By: Relevance
“…Su principal limitación se encuentra en la gran complejidad computacional en tiempos de búsqueda (60,61). El vector de cuantificación es extremadamente eficiente en compresión de regiones uniformes de una imagen (62). Además, esta técnica se usa comúnmente en la compresión de imágenes de mamografía, puesto que permite la detección y clasificación de las anormalidades presentes en este tipo de imágenes (63,64).…”
Section: Cuantificaciónunclassified
“…Su principal limitación se encuentra en la gran complejidad computacional en tiempos de búsqueda (60,61). El vector de cuantificación es extremadamente eficiente en compresión de regiones uniformes de una imagen (62). Además, esta técnica se usa comúnmente en la compresión de imágenes de mamografía, puesto que permite la detección y clasificación de las anormalidades presentes en este tipo de imágenes (63,64).…”
Section: Cuantificaciónunclassified
“…A close examination of the existing 3-D medical image compression system [4] reveals a huge gap, particularly for the hardware implementation, since most of the existing works contribute to algorithms development and optimisation [53][54][55][56][57][58][59]. In the following, an overview of these works is described, and the first two descriptions [7], [8] will address the contributions on the hardware implementation of 3-D medical image compression, whilst the others focus on software simulation or algorithms development and optimisation [53][54][55][56][57][58][59].…”
Section: Medical Image Compressionmentioning
confidence: 99%
“…In the following, an overview of these works is described, and the first two descriptions [7], [8] will address the contributions on the hardware implementation of 3-D medical image compression, whilst the others focus on software simulation or algorithms development and optimisation [53][54][55][56][57][58][59].…”
Section: Medical Image Compressionmentioning
confidence: 99%
See 1 more Smart Citation
“…Although many researchers have focused on lossy compression of biomedical images in [3] and [2]. In these papers, lossy compression is attained using vector quantization and the effect of quantization error is seldom studied.…”
Section: Introductionmentioning
confidence: 99%