BackgroundLow back pain (LBP) is a common problem that can contribute to motor dysfunction. Previous studies reporting the changes in kinematic characteristics caused by LBP present conflicting results. This study aimed to apply the multisegmental spinal model to investigate the kinematic changes in patients with lumbar disc herniation (LDH) during five activities of daily living (ADLs).MethodsTwenty-six healthy subjects and 7 LDH patients participated in this study and performed level walking, stair climbing, trunk flexion, and ipsilateral and contralateral pickups. The angular displacement of the thorax, upper lumbar (ULx), lower lumbar (LLx), pelvis, hip, and knee was calculated using a modified full-gait-model in the AnyBody modeling system.ResultsIn the patient group, the ULx almost showed no sagittal angular displacement while the LLx remained part of the sagittal angular displacement during trunk flexion and the two pickups. In the two pickups, pelvic tilt and lower extremities’ flexion increased to compensate for the deficiency in lumbar motion. LDH patients exhibited significantly less pelvic rotation during stair climbing and greater pelvic rotation in other ADLs, except in contralateral pickup. In addition, LDH patients demonstrated more antiphase movement in the transverse plane between ULx and LLx, during level walking and stair climbing, between thorax and pelvis in the two pickups.ConclusionsLDH patients mainly restrict the motion of LLx and ULx in the spinal region during the five ADLs. Pelvic rotation is an important method to compensate for the limited lumbar motion. Furthermore, pelvic tilt and lower extremities’ flexion increased when ADLs were quite difficult for LDH patients.