Brain is one of the richest organs in lipid content. Phospholipids (glycerophospholipids and sphingolipids) are important building blocks of cell membranes, which provide an optimal environment for protein interactions, trafficking and function. Because of that, alterations in their cellular levels could lead to different pathogenic processes in the brain, such as in Alzheimer’s disease (AD), the most common type of dementia among older populations. There is increasing evidence that phospholipid changes occur during pathogenic processes in AD. It is known that lipids are tightly connected with metabolism of the Amyloid Precursor Protein (APP), which produces Amyloid-beta peptide (Aβ), the main component of senile plaques, which represent the main pathological hallmark of AD. However, the mechanism(s) of the lipid-effect on Aβ metabolism and AD pathogenesis is still not completely understood. This review summarizes the current knowledge on phospholipid changes occurring during normal aging and discusses phospholipid changes in the human brain associated with different stages of AD, as well changes in the cerebrospinal fluid and blood/plasma, which are interesting potential biomarkers for AD diagnosis and disease monitoring. At the end, we have discussed future perspectives of phospholipid changes as potential biomarkers and as targets for development of novel treatment strategies against AD.