In the energy resource-constrained wireless applications, turbo codes are frequently employed to guarantee reliable data communication. To both reduce the power dissipation of the turbo decoder and the probability of data frame retransmission in the physical layer, memory capacity reduced near optimal turbo decoder is of special importance from the perspective of practical implementation. In this regard, a state metrics compressed decoding technique is proposed. By inserting two modules in the conventional turbo decoding architecture, a smaller quantization scheme can be applied to the compressed state metrics. Furthermore, structure of the inserted modules is described in detail. We demonstrate that one or two rounds of compression/decompression are performed in most cases during the iterative decoding process. At the cost of limited dummy decoding complexity, the state metrics cache (SMC) capacity is reduced by 53.75%. Although the proposed technique is a lossy compression strategy, the introduced errors only have tiny negative influence on the decoding performance as compared with the optimal Log-MAP algorithm.