This article deals with the regression analysis of the ultrasonic signal amplitude when the character of the reflection surface has been changed from a planar case to a sharp corner case. The experiment was performed at a measurement distance within the interval from 100 mm to 215 mm. A nonlinear correlation between the amplitude of the ultrasound signal and the measured distance was demonstrated. By analyzing the frequency spectra, a poor nonlinear correlation between the maximum frequency component and the distance vector was found for the sharp corner case versus the planar case, which proved similar nonlinear characteristics as the signal amplitude marker. The strong linear correlation in the distance difference vectors in the amplitude analysis of the ultrasound signal confirmed the hypothesis of a direct relationship between the reflection surface geometric characteristic and the polarity of the difference. The ultrasound signal was identified as a 3rd-order dynamic system. The nonlinear correlation of the steady-state values of the modelled transfer functions versus distance likewise shows the characteristic of the polarity difference or character derivative as a quantification marker of the characteristics of the reflection surface from the geometric point of view.