The WADAPT consortium (Wireless Allowing Data and Power Transfer) was created to study wireless (multi-gigabit) data transfer for high-energy physics applications (LoI, CERN-LHCC-2017-002; LHCC-I-028.-2017). Emerging millimetre wave technologies allow fast signal transfer and efficient partitioning of detectors in topological regions of interest. Large bandwidths are available at those frequencies, allowing very high data rates at short range and conveniently substituting a mass of materials (cables and connectors). The Wadapt initiative aims at building proof of concept for use in future HEP experiments. For vertex detectors at HL-LHC, the bandwidth of 60 GHz is adequate and commercial products are already available, providing 6 Gbps data links. Products have been tested for signal confinement, crosstalk, electromagnetic immunity and resistance to radiation. An HEP dedicated 60 GHz Integrated Chip is being built in Heidelberg, using 130 nm SiGe BICMOS technology. It should assess the feasibility and performance of the wireless link and establish solid foundation for designing the final reading system. At longer terms, 140 GHz bands could also be used for higher data rates (> 100 Gbps) for future FCC applications. Wireless reading could widespread to many detectors, with the possibility of adding intelligence on the detector to perform fourdimensional reconstruction of the traces and vertexes online, in order to attach the traces to their vertex with great efficiency even in difficult experimental conditions. The WADAPT project includes also a long-term step aimed at transmitting energy wirelessly. This would create a new paradigm for the transmission of data and power in particle physics detectors.