Carbon peaking and carbon neutrality have become important considerations in today’s manufacturing industry. Vehicle lightweight design can reduce carbon emissions and it is an important means to achieve carbon peak and carbon neutrality. In this study, the lightweight design method of automotive brake hub towards low carbon and the calculation method of low-carbon benefit are presented. A brake hub is the core of a drum brake, working together with a friction plate and brake shoe to complete the braking process. The requirements for the safety performance of brake hub are becoming increasingly more stringent in order to improve the stability and safety of the braking process. The brake hub ZD02-151122A manufactured by Anhui Axle Co., Ltd.(Suzhou, China), was used as the research object. The lightweight optimization of the brake hub was designed under the lightweight drive to reduce the shape variables and stress values of the brake hub and to reduce the mass. The proposed optimization scheme changed the chamfering to 45 × 45 and increased the number of bolt holes to eight. Compared with the original brake hub, the maximum strain, maximum stress value, stress concentration coefficient, and mass were reduced by 15.38%, 17.66%, 1.50%, and 17.40%, respectively, which achieved the specified optimization goal of improving mechanical properties and reducing mass. Towards low carbon, the reduction in carbon emissions from the optimized brake hub manufacturer and the vehicle during operation was calculated. For Anhui Axle Co., Ltd., the carbon emission can be reduced by 4.21 × 106 kg per year. Moreover, vehicle exhaust emissions can be reduced by 8.76 × 108 kg if all trucks produced by a medium-sized vehicle assembly company are driven on the road until being scrapped. This study serves as a reference for design optimization and low-carbon benefit analysis of other major automotive components.