Keyword spotting aims to identify specific keyword audio utterances. In recent years, deep convolutional neural networks have been widely utilized in keyword spotting systems. However, their model architectures are mainly based on off-the-shelf backbones such as VGG-Net or ResNet, instead of specially designed for the task. In this paper, we utilize neural architecture search to design convolutional neural network models that can boost the performance of keyword spotting while maintaining an acceptable memory footprint. Specifically, we search the model operators and their connections in a specific search space with Encoder-Decoder neural architecture optimization. Extensive evaluations on Google's Speech Commands Dataset show that the model architecture searched by our approach achieves a state-of-the-art accuracy of over 97%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.