We present a new method to generate a neutral beam for surface treatment of materials by fast atoms of inert gases. The new method allows for treatment at lower pressures enlarging the scope for glow discharge applications. To generate the monoenergetic neutral beam, a grid composed of parallel plates is placed inside a vacuum chamber, a glow discharge plasma was generated, and a beam was formed by pulsing the grid to 30 kV to extract ions from the glow discharge. The ions were then neutralized by small-angle scattering at the surfaces of the grid. By applying the high voltage for 50 µs with a repetition frequency of 50 Hz, heating of the target could be limited to 100 °C (instead of 700 °C when running continuously). We present results showing the uniformity of the created beam and its energy distribution using Doppler-shift measurement. Finally, we show friction measurement of treated alumina pieces as a working example of an application of this technology.