Abstract:The structures realized using sandwich technologies combine low weight with high energy absorbing capacity, so they are suitable for applications in the transport industry (automotive, aerospace, shipbuilding industry) where the "lightweight design" philosophy and the safety of vehicles are very important aspects. While sandwich structures with polymeric foams have been applied for many years, currently there is a considerable and growing interest in the use of sandwiches with aluminum foam core. The aim of this paper was the analysis of low-velocity impact response of AFS (aluminum foam sandwiches) panels and the investigation of their collapse modes. Low velocity impact tests were carried out by a drop test machine and a theoretical approach, based on the energy balance model, has been applied to investigate their impact behavior. The failure mode and the internal damage of the impacted AFS have also been investigated by a Computed Tomography (CT) system.