The effects of plasticization of poly(methyl methacrylate) glass on the boson peaks observed by Raman and neutron scattering are compared. In plasticized glass the cohesion heterogeneities are responsible for the neutron boson peak and partially for the Raman one, which is enhanced by the composition heterogeneities. Because the composition heterogeneities have a size similar to that of the cohesion ones and form quasiperiodic clusters, as observed by small angle X-ray scattering, it is inferred that the cohesion heterogeneities in a normal glass form nearly periodic arrangements too. Such structure at the nanometric scale explains the linear dispersion of the vibrational frequency versus the transfer momentum observed by inelastic X-ray scattering.