In this concluding chapter, the relationships between accumulation of screening pigments in microalgae and plants and the corresponding increase in their resistance to photodamage by radiation in different ranges of the spectrum are considered. According to the evidence presented in this chapter, screening pigments can efficiently protect the photosynthetic apparatus from bleaching under harsh environmental conditions, including irradiation by strong photosynthetically active radiation, and alleviate or prevent almost completely the photoinhibition that develops in plants under stresses of various nature. It is noted, in conclusion, that accumulation of screening pigments represents in many cases an important factor of plant stress tolerance.As emphasized already (see Chap. 1), necessary evidence confirming the photoprotective effect of a screening compound is constituted by an increase in the resistance to photodamage of the organism accumulating this pigment in response to high-light stress. Currently, a large body of experimental data is available on the participation of screening pigments in protection of photoautotrophs against damage by high fluxes of solar radiation (Close and McArthur 2002; Cockell and Knowland 1999;Gould et al. 2000;. At the same time, direct evidence of and quantitative information about the relationships between the amount of screening pigments and the extent of plant resistance to photodamage is relatively scarce. In the brief summary of works on the physiological significance of screening pigments presented below, emphasis is placed on the quantitative evidence of photoprotective effects of screening pigments.