A colloidal quantum dot light-emitting diode (QLED) is reported with substantially enhanced light extraction effi ciency by applying a layer of largescale, low-cost, periodic nanopillar arrays. Zinc oxide nanopillars are grown on the glass surface of the substrate using a simple, effi cient method of non-wetting templates. With the layer of ZnO nanopillar array as an optical outcoupling medium, a record high current effi ciency (CE) of 26.6 cd/A is achieved for QLEDs. Consequently, the corresponding external quantum effi ciency (EQE) of 9.34% reaches the highest EQE value for green-emitting QLEDs. Also, the underlying physical mechanisms enabling the enhanced light-extraction are investigated, which leads to an excellent agreement of the numerical results based on the mode theory with the experimental measurements. This study is the fi rst account for QLEDs offering detailed insight into the light extraction effi ciency enhancement of QLED devices. The method demonstrated here is intended to be useful not only for opening up a ubiquitous strategy for designing high-performance QLEDs but also with respect to fundamental research on the light extraction in QLEDs.