We consider practical hardware implementation of Polar decoders. To reduce latency due to the serial nature of successive cancellation (SC), existing optimizations [7]- [13] improve parallelism with two approaches, i.e., multi-bit decision or reduced path splitting. In this paper, we combine the two procedures into one with an error-pattern-based architecture. It simultaneously generates a set of candidate paths for multiple bits with pre-stored patterns. For rate-1 (R1) or single parity-check (SPC) nodes, we prove that a small number of deterministic patterns are required to guarantee performance preservation. For general nodes, low-weight error patterns are indexed by syndrome in a look-up table and retrieved in O(1) time. The proposed flip-syndrome-list (FSL) decoder fully parallelizes all constituent code blocks without sacrificing performance, thus is suitable for ultra-low-latency applications. Meanwhile, two code construction optimizations are presented to further reduce complexity and improve performance, respectively.