The existing communication-induced checkpointing protocols may not scale well due to their slow acquisition of the most recent timestamps of the next checkpoints of other processes. Accurate situation awareness with diversified information conveyance paths is needed to reduce the number of unnecessary forced checkpoints taken as few as possible. In this paper, a scalable communication-induced checkpointing protocol is proposed to considerably cut down the possibility of performing unnecessary forced checkpointing by exploiting the beneficial features of reliable communication channels. The protocol enables the sender of an application message to swiftly attain the most recent timestamp-related information of the next checkpoint of its receiver and accelerate the spread of the information to others, with little overhead. This behavioral feature may significantly elevate the accuracy of the awareness of the situations in which forced checkpointing is actually needed for useless checkpoint-free recovery. In addition, it generates no extra control message and no message logging overhead while significantly lessening the latency of message sending. Moreover, the protocol can always be operated under the non-deterministic execution model. The evaluation results indicate that the proposed protocol outperforms the existing ones at the reduced forced checkpointing overheads from 12.5% to 84.2%, and at the reduced total execution times from 2.5% to 11.5%.