2020
DOI: 10.1109/ojcas.2020.3009822
|View full text |Cite
|
Sign up to set email alerts
|

Low Power Optimisations for IoT Wearable Sensors Based on Evaluation of Nine QRS Detection Algorithms

Abstract: This paper aims to reduce the power consumption of electrocardiography based wearable healthcare devices, by introducing power reduction approaches and considerations at system level design, where we have the highest potential to influence power. It focuses, in particular, on algorithm design and implementation, data acquisition, and transmission under constrained resources. A thorough investigation of the suitability of nine existing algorithms for on-sensor QRS feature detection is conducted, with respect to… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
8
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
7
3

Relationship

3
7

Authors

Journals

citations
Cited by 23 publications
(9 citation statements)
references
References 31 publications
0
8
0
1
Order By: Relevance
“…Singleton features 1) Peak locations: The location (in time) of the R peak and the P, QRS, and T waveform onset times are the most elementary features that are the basis of many other elaborate features below. A complete implementation would need to estimate these features using existing algorithms [34], [35], [36]. In this work we assume, that R-peak detection is done on-chip by the data acquisition analog-front-end circuit, as in the case of commercially available solutions [37].…”
Section: Appendix B Feature Definitionsmentioning
confidence: 99%
“…Singleton features 1) Peak locations: The location (in time) of the R peak and the P, QRS, and T waveform onset times are the most elementary features that are the basis of many other elaborate features below. A complete implementation would need to estimate these features using existing algorithms [34], [35], [36]. In this work we assume, that R-peak detection is done on-chip by the data acquisition analog-front-end circuit, as in the case of commercially available solutions [37].…”
Section: Appendix B Feature Definitionsmentioning
confidence: 99%
“…Additionally, we chose to use R-peak location annotations from MIT-BIH database [21] directly instead of implementing our own R-peak detector. Since there are several existing works that achieve good accuracy for R-peak detection [23], [24], [25], we narrowed the scope of this work and focus exclusively on developing the classifier.…”
Section: Data Set and Pre-processingmentioning
confidence: 99%
“…Esta conexión se conoce como Internet de las Cosas (IoT), con la cual es posible realizar el monitoreo de variables y automatización de procesos de forma rápida y segura, permitiendo conectar una variedad de dispositivos a Internet, logrando una comunicación con las personas y objetos (Luna et al, 2019). Una aplicación de la IoT es en el campo de la salud, con el desarrollo de dispositivos de monitoreo cardíaco, el cual ha crecido en los últimos años, estos dispositivos tienen la ventaja de permitir una mayor movilidad, además de ser útiles en la detección temprana de enfermedades cardiovasculares en comparación con los monitores Holter tradicionales (Li et al, 2020). Es aquí donde se destaca el Internet de las cosas (IoT), el cual tiene el potencial de mejorar las aplicaciones médicas en los dispositivos de electrocardiografía.…”
Section: Introductionunclassified