Abstract-In this paper, we present a real-time and energyefficient multi-scale object detector using Histogram of Oriented Gradient (HOG) features and Support Vector Machine (SVM) classification. Parallel detectors with balanced workload are used to enable processing of multiple scales and increase the throughput such that voltage scaling can be applied to reduce energy consumption. Image pre-processing is also introduced to further reduce power and area cost of the image scales generation. This design can operate on high definition 1080HD video at 60 fps in real-time with a clock rate of 270 MHz, and consumes 45.3 mW (0.36 nJ/pixel) based on post-layout simulations. The ASIC has an area of 490 kgates and 0.538 Mbit on-chip memory in a 45nm SOI CMOS process.