High-lift devices are commonly modelled using potential flow methods at the conceptual design stage. Often, these analyses require the use of prescribed wake shapes in order to avoid numerical stability issues. The wake type used, however, has an impact on the absolute aerodynamic load predictions, which is why, in general, these methods are used to assess performance changes due to configuration variations. Therefore, a study was completed that compared the predicted aerodynamic performance changes of such variations of high-lift configurations using different wake types. Lift and induced drag results are compared with the results that were obtained using relaxed wakes and various prescribed wake shapes. Specific attention is given to predictions of performance changes due to changes in geometry. It was found that models with wakes that are prescribed below the freestream direction yield the best results when investigating performance changes due to flap deflections and flap-span changes. The effect of flap-gap sizes is best evaluated using a fully-relaxed model. The numerically most stable approach of wakes that are prescribed leaving the trailing edge upwards seems to be least reliable in predicting performance changes.