Rapid thermal oxidation (RTO) of Si in ozone gas is studied at temperatures between 200 and 550 °C, and the properties of the resulting ultrathin oxides are characterized using in situ mirror-enhanced reflection Fourier transform infrared (IR) spectroscopy. Thus, the frequency and intensity of the longitudinal optical vibrational mode of the Si–O–Si asymmetric stretching from ultrathin oxide films (<30 Å) are probed in different processing environments and related to the oxidation kinetics and interfacial layer properties. The oxidation rate in ozone is found to be comparable to the one in pure oxygen at approximately 200 °C higher temperature. Analyses of the oxidation in ozone show a fast oxidation regime followed by a slow one with activation energies of 0.13±0.01 and 0.19±0.04 eV, respectively. Two regions are also observed for the oxidation in pure O2 with activation energies of 0.20±0.03 eV for the fast oxidation regime and 0.36±0.04 eV for the slow one. X-ray photoelectron spectroscopy results and IR spectral feature frequency shifts suggest that the RTO of silicon in ozone ambient results in a thinner, less-stressed interfacial layer than the one obtained in pure O2. Preliminary electrical characterization using surface charge analyses indicates that the oxides formed in ozone are of superior quality.