The mechanism of thermal oxidation of silicon in dry O2 ambient with UV-irradiation has been discussed. The dependence of SiO2 thickness on oxidation time follows the model proposed by Cabrera and Mott for relatively short oxidation time. Such dependence follows the model by Deal and Grove for longer time. The main oxidizing species is ozone (O3) or some other reactive species generated from O3 at lower temperatures and this gradually changes to O2 with an increase in temperature. The SiO2 film formed at 500°C for 1 h by the present technique has a similar quality to that of SiO2 formed at high temperatures in dry O2 ambient, as evaluated from Fourier Transform-Infrared (FT-IR), Auger Electron Spectroscopy (AES) and Capacitance-Voltage (C-V) characteristics.
Silicon can be thermally oxidized at low temperatures under dry O2 or N2O flow with UV-irradiation. The oxide thickness is about 9.0 nm in 4 h at 500°C on dry O2+UV oxidation. The oxide formed by dry O2+UV is thicker than that formed by N2O+UV at a relatively long oxidation time. The main oxidation species are ozone for dry O2+UV and excited-state 1D oxygen atoms for N2O+UV. The quality of oxide film formed by dry O2+UV is equal to that formed by common oxidation in dry O2 without UV.
To date, various connection rerouting methods for connection-oriented mobile networks have been proposed. The previous methods, however, are limited to specific topologies or environments. In this paper, we propose the connection-information-based rerouting widely applicable to various connection-oriented mobile networks. This method requires neither a specific topology nor a complex connection, enables fast rerouting, provides appropriate route optimality, and can be extended easily.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.