The first systematic investigation of unactivated aliphatic sulfur compounds as electrophiles in transition metal-catalyzed cross-coupling are described. Initial studies focused on discerning the structural and electronic features of the organosulfur substrate which enable the challenging oxidative addition to the C(sp3)–S bond. Through extensive optimization efforts, an Fe(acac)3-catalyzed cross-coupling of unactivated alkyl aryl thio ethers with aryl Grignard reagents was realized, in which a nitrogen “directing group” on the S-aryl moiety of the thio ether served a critical role in facilitating the oxidative addition step. In addition, alkyl phenyl sulfones were found to be effective electrophiles in the Fe(acac)3-catalyzed cross-coupling with aryl Grignard reagents. For the latter class of electrophile, a thorough assessment of the various reaction parameters revealed a dramatic enhancement in reaction efficiency with an excess of TMEDA (8.0 equiv). The optimized reaction protocol was used to evaluate the scope of the method with respect to both the organomagnesium nucleophile and sulfone electrophile.