In this paper, we systematically evaluate combinational logic families for CNT technology implementation for a variety of logic families, signal transition times, and transistor parameters. We compare CMOS static logic, and Intel LVS logic in CNT and silicon technologies by SPICE simulation based on Predictive Technology Model and Stanford compact CNFET models. We observe that CMOS static logic in CNT technology achieves limited (e.g., 3.44×) performance improvement and (e.g., 3.83×) power consumption reduction, while Intel LVS logic achieves more significant performance improvement and ordersof-magnitude of power consumption reduction. Intel LVS logic achieves an average of 4.02× performance improvement and 1137.64× power consumption reduction compared with CMOS static logic in silicon for the same combinational logic functions and input signals, and enhanced reliability, making it an ideal combinational logic circuit paradigm in CNT technology.