1998
DOI: 10.46298/dmtcs.249
|View full text |Cite
|
Sign up to set email alerts
|

Lower bounds for sparse matrix vector multiplication on hypercubic networks

Abstract: International audience In this paper we consider the problem of computing on a local memory machine the product y = Ax,where A is a random n×n sparse matrix with Θ (n) nonzero elements. To study the average case communication cost of this problem, we introduce four different probability measures on the set of sparse matrices. We prove that on most local memory machines with p processors, this computation requires Ω ((n/p) \log p) time on the average. We prove that the same lower bound also holds, in … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 11 publications
0
0
0
Order By: Relevance