Gray mold caused by Botrytis cinerea is a critical disease that results in severe postharvest losses for the apple industry. In recent years, biological control has become an increasingly effective approach for controlling postharvest diseases in fruits. Brassica plants contain abundant natural compounds with known antimicrobial activity against numerous plant pathogens. In this study, a large-scale screening of 90 mustard cultivars was conducted to evaluate their biofumigation effects against B. cinerea. Among these, one mustard cultivar named Dilong-1, displayed the highest inhibitory effect against B. cinerea, and was able to completely inhibit mycelial growth. Further investigations showed that fumigation with Dilong-1 inhibited mycelial growth, sporulation, and spore germination of B. cinerea in vitro. In addition, fumigation using Dilong-1 showed a wide antifungal spectrum, including other fruit postharvest pathogens such as Phytophthora litchii. Furthermore, apple gray mold disease severity was significantly reduced by biofumigation using Dilong-1. Importantly, fumigation with Dilong-1 did not negatively impact final apple qualities, including weight loss, firmness, and total soluble solids. These results suggested that Dilong-1 significantly inhibited gray mold decay caused by B. cinerea without affecting the quality of apple fruits. In conclusion, biological fumigation of apple fruits with the mustard cultivar Dilong-1 is a promising eco-friendly approach for controlling apple gray mold during storage and shipment.