Combined efforts of farmers, rice scientists, extension personnel and Government of Bangladesh have yielded clean rice growth rate of 0.34 million ton (MT) year -1 during 2009-10 to 2013-14 in the country. In 2014-15, the country acquired a rice surplus of about 2 MT. However, maintaining the current surplus of rice in the coming decades is a great challenge. Authentic estimation of future rice requirement and future resource availability would guide to way forward. This paper presents rice vision for Bangladesh leading to 2050 and beyond. In this study, secondary data from different government-owned statistics and research institutes were collected, analyzed and synthesized to develop models and/or model parameters to generate outputs such as future population, rice production and rice requirement. Population of Bangladesh will reach 215.4 million in 2050, when 44.6 MT of clean rice will be required. With the pace of rice-production-increase in the last five years, production can reach 47.2 MT, having a surplus of 2.6 MT in 2050. The study sets 2.6 MT as the target for clean rice surplus every year leading to 2050 and beyond. Several hurdles, such as increasing population, decreasing resources and increasing climate vulnerability, can hinder achieving the target. Three major interventions-accelerating genetic gain, minimizing yield gap and curtailing adoption lag-are proposed to break the barriers to achieve the target. Major challenges to implement the interventions include shrinking net cropped area, decreasing availability of irrigation water and increasing pressure on soil fertility. Smart technology such as, location specific variety, profitable cropping sequences, innovative cultural management, and mechanization coupled with smart dissemination using multiple means would ease production barriers. We recommend a number of measures, such as, guaranteeing a minimum cropped area, accelerating the rate of genetic gain in varietal development and intensifying collaboration among the stakeholders to reduce adoption lag of newly released promising rice varieties, to achieve the rice vision of Bangladesh leading to 2050 and beyond.
Each cell of higher organism adults is derived from a fertilized egg through a series of divisions, during which mutations can occur. Both the rate and timing of mutations can have profound impacts on both the individual and the population, because mutations that occur at early cell divisions will affect more tissues and are more likely to be transferred to the next generation. Using large-scale multigeneration screening experiments for recessive lethal or nearly lethal mutations of Drosophila melanogaster and recently developed statistical analysis, we show for male D. melanogaster that (i) mutation rates (for recessive lethal or nearly lethal) are highly variable during germ cell development; (ii) first cell cleavage has the highest mutation rate, which drops substantially in the second cleavage or the next few cleavages; (iii) the intermediate stages, after a few cleavages to right before spermatogenesis, have at least an order of magnitude smaller mutation rate; and (iv) spermatogenesis also harbors a fairly high mutation rate. Because germ-line lineage shares some (early) cell divisions with somatic cell lineage, the first conclusion is readily extended to a somatic cell lineage. It is conceivable that the first conclusion is true for most (if not all) higher organisms, whereas the other three conclusions are widely applicable, although the extent may differ from species to species. Therefore, conclusions or analyses that are based on equal mutation rates during development should be taken with caution. Furthermore, the statistical approach developed can be adopted for studying other organisms, including the human germ-line or somatic mutational patterns.within-host coalescent | mutation cluster | likelihood
Hydroxyproline-rich glycoproteins (HRGPs) play a defensive role in host-pathogen interactions. However, specific roles of individual HRGPs in plant defense against pathogen are poorly understood. Changes in extracellular distribution and abundance of individual cell wall HRGPs were investigated on root sections of two wax gourd (Benincasa hispida Cogn.) cultivars (Fusarium wilt resistant and susceptible, respectively), which were analyzed by immunolabelling with 20 monoclonal antibodies recognizing different epitopes of extensins and arabinogalactan proteins (AGPs) after being inoculated with Fusarium oxysporum f. sp. Benincasae or treated with fusaric acid (FA). These analyses revealed the following: (1) The levels of JIM11 and JIM20 interacting extensins were higher in the resistant cultivar. Either treatment caused a dramatic decrease in signal in both cultivars, but some new signal appeared in the rhizodermis. (2) The AGPs or rhamnogalacturonan containing CCRCM7-epitope were enhanced in the resistant cultivar, but not in the susceptible one by either treatment. (3) Either treatment caused a slight increase in the levels of the AGPs recognized by LM2 and JIM16, but there were no differences between two cultivars. (4) The MAC204 signal nearly disappeared after FA treatment, but this was not the case with pathogen attack. (5) The LM14 signal slightly decreased after both treatments in both cultivars, but a less decrease was observed with the resistant cultivar. These results indicate that the CCRCM7 epitope likely contributed to the resistance of wax gourd to this pathogen, and JIM11 and JIM20 interacting extensins as well as LM2, LM14, MAC204 and JIM16 interacting AGPs were involved in the host-pathogen interaction.
Recent studies suggest that plant pectin methylesterases (PMEs) are directly involved in plant defence besides their roles in plant development. However, the molecular mechanisms of PME action on pectins are not well understood. In order to understand how PMEs modify pectins during banana (Musa spp.)–Fusarium interaction, the expression and enzyme activities of PMEs in two banana cultivars, highly resistant or susceptible to Fusarium, were compared with each other. Furthermore, the spatial distribution of PMEs and their effect on pectin methylesterification of 10 individual homogalacturonan (HG) epitopes with different degrees of methylesterification (DMs) were also examined. The results showed that, before pathogen treatment, the resistant cultivar displayed higher PME activity than the susceptible cultivar, corresponding well to the lower level of pectin DM. A significant increase in PME expression and activity and a decrease in pectin DM were observed in the susceptible cultivar but not in the resistant cultivar when plants were wounded, which was necessary for successful infection. With the increase of PME in the wounded susceptible cultivar, the JIM5 antigen (low methyestrified HGs) increased. Forty-eight hours after pathogen infection, the PME activity and expression in the susceptible cultivar were higher than those in the resistant cultivar, while the DM was lower. In conclusion, the resistant and the susceptible cultivars differ significantly in their response to wounding. Increased PMEs and thereafter decreased DMs acompanied by increased low methylesterified HGs in the root vascular cylinder appear to play a key role in determination of banana susceptibility to Fusarium.
Patients with schizophrenia, unsatisfactorily treated with oral or depot conventional antipsychotics, showed improvement in symptom control, tolerability, and patient satisfaction after switching to RLAI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.