Recent studies provided strong support for the view that ubiquitin-specific protease 22 (USP22) plays a central role in cell-cycle progression and also in pathological processes such as oncogenesis. We have recently shown that USP22 levels are elevated in colorectal carcinoma with associated increase in the expression of several cell-cycle-related genes. However, the precise mechanism for these functions of USP22 at molecular level has not been fully elucidated. Currently, we investigated the role of USP22 in human colorectal cancer (CRC). We observed that USP22 expression was statistically significantly correlated positively with that of BMI-1, c-Myc and both, pAkt (Ser473), and pAkt (Thr308), in primary tumor tissues from 43 CRC patients. Down-regulation of USP22 expression in HCT116 colorectal cancer cells by siRNA resulted in the accumulation of cells in the G1 phase of the cell cycle. RNAi-knockdown of USP22 in HCT16 cells also led to the repression of BMI-1 and was accompanied by the up-regulation of p16INK4a and p14ARF, with a consequent decrease in E2F1 and p53 levels. In addition, down-regulation of c-Myc-targeted cyclin D2 was also noticed in cells treated with USP22-siRNA. Furthermore, our results showed that USP22 deletion also caused down-regulation of Akt/GSK3β activity, which can also contribute to the reduction of cyclin D2. Collectively, our current results suggest that USP22 may act as an oncogene in CRC as it positively regulates cell cycle via both BMI-1-mediated INK4a/ARF pathway and Akt signaling pathway.
Haploidentical hematopoietic stem-cell transplantation (haplo-HSCT) is associated with an increased risk of graft failure and severe graft-versus-host disease (GVHD). Mesenchymal stromal cells (MSCs) have been shown to support in vivo normal hematopoiesis and to display potent immunesuppressive effects. We cotransplanted the culture-expanded third-party donor-derived umbilical cord MSCs (UC-MSCs) in 21 young people with severe aplastic anemia (SAA) undergoing haplo-HSCT without T-cell-depleted. We observed that all patients had sustained hematopoietic engraftment without any adverse UC-MSC infusion-related events. Furthermore, we did not observe any increase in severe aGVHD. These data suggest that UC-MSCs, possibly thanks to their potent immunosuppressive effect on allo-reactive host T lymphocytes escaping the preparative regimen, reduce the risk of graft failure and severe GVHD in haplo-HSCT.
Background The loquat (Eriobotrya japonica) is a species of flowering plant in the family Rosaceae that is widely cultivated in Asian, European, and African countries. It blossoms in the winter and ripens in the early summer. The genome of loquat has to date not been published, which limits the study of molecular biology in this cultivated species. Here, we used the third-generation sequencing technology of Nanopore and Hi-C technology to sequence the genome of Eriobotrya. Findings We generated 100.10 Gb of long reads using Oxford Nanopore sequencing technologies. Three types of Illumina high-throughput sequencing data, including genome short reads (47.42 Gb), transcriptome short reads (11.06 Gb), and Hi-C short reads (67.25 Gb), were also generated to help construct the loquat genome. All data were assembled into a 760.1-Mb genome assembly. The contigs were mapped to chromosomes by using Hi-C technology based on the contacts between contigs, and then a genome was assembled exhibiting 17 chromosomes and a scaffold N50 length of 39.7 Mb. A total of 45,743 protein-coding genes were annotated in the Eriobotrya genome, and we investigated the phylogenetic relationships between the Eriobotrya and 6 other Rosaceae species. Eriobotrya shows a close relationship with Malus and Pyrus, with the divergence time of Eriobotrya and Malus being 6.76 million years ago. Furthermore, chromosome rearrangement was found in Eriobotrya and Malus. Conclusions We constructed the first high-quality chromosome-level Eriobotrya genome using Illumina, Nanopore, and Hi-C technologies. This work provides a valuable reference genome for molecular studies of the loquat and provides new insight into chromosome evolution in this species.
Colorectal cancer (CRC) remains both common and fatal, and its successful treatment is greatly limited by the development of stem cell‐like characteristics (stemness) and chemoresistance. MiR‐30‐5p has been shown to function as a tumor suppressor by targeting the Wnt/β‐catenin signaling pathway, but its activity in CRC has never been assessed. We hypothesized that miR‐30‐5p exerts anti‐oncogenic effects in CRC by regulating the USP22/Wnt/β‐catenin signaling axis. In the present study, we demonstrate that tissues from CRC patients and human CRC cell lines show significantly decreased miR‐30‐5p family expression. After identifying the 3’UTR of USP22 as a potential binding site of miR‐30‐5p, we constructed a luciferase reporter containing the potential miR‐30‐5p binding site and measured the effects on USP22 expression. Western blot assays showed that miR‐30‐5p decreased USP22 protein expression in HEK293 and Caco2 CRC cells. To evaluate the effects of miR‐30‐5p on CRC cell stemness, we isolated CD133 + CRC cells (Caco2 and HCT15). We then determined that, while miR‐30‐5p is normally decreased in CD133 + CRC cells, miR‐30‐5p overexpression significantly reduces expression of stem cell markers CD133 and Sox2, sphere formation, and cell proliferation. Similarly, we found that miR‐30‐5p expression is normally reduced in 5‐fluorouracil (5‐FU) resistant CRC cells, whereas miR‐30‐5p overexpression in 5‐FU resistant cells reduces sphere formation and cell viability. Inhibition of miR‐30‐5p reversed the process. Finally, we determined that miR‐30‐5p attenuates the expression of Wnt/β‐catenin signaling target genes (Axin2 and MYC), Wnt luciferase activity, and β‐catenin protein levels in CRC stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.