Figure 1: 3D display with content-adaptive parallax barriers. We show that light field display using dual-stacked LCDs can be cast as a matrix approximation problem, leading to a new set of content-adaptive parallax barriers. (Left, Top) A 4D light field, represented as a 2D array of oblique projections. (Left, Bottom) A dual-stacked LCD displays the light field using content-adaptive parallax barriers, confirming both vertical and horizontal parallax. (Middle and Right) A pair of content-adaptive parallax barriers, drawn from a rank-9 decomposition of the reshaped 4D light field matrix. Compared to conventional parallax barriers, with heuristically-determined arrays of slits or pinholes, content adaptation allows increased display brightness and refresh rate while preserving the fidelity of projected images.
AbstractWe optimize automultiscopic displays built by stacking a pair of modified LCD panels. To date, such dual-stacked LCDs have used heuristic parallax barriers for view-dependent imagery: the front LCD shows a fixed array of slits or pinholes, independent of the multi-view content. While prior works adapt the spacing between slits or pinholes, depending on viewer position, we show both layers can also be adapted to the multi-view content, increasing brightness and refresh rate. Unlike conventional barriers, both masks are allowed to exhibit non-binary opacities. It is shown that any 4D light field emitted by a dual-stacked LCD is the tensor product of two 2D masks. Thus, any pair of 1D masks only achieves a rank-1 approximation of a 2D light field. Temporal multiplexing of masks is shown to achieve higher-rank approximations. Non-negative matrix factorization (NMF) minimizes the weighted Euclidean distance between a target light field and that emitted by the display. Simulations and experiments characterize the resulting content-adaptive parallax barriers for low-rank light field approximation.