Mass spectrometry has proven to be a powerful technique applicable on trace amounts for the identification of known hemes and cyclic tetrapyrroles, and for providing critical information for the structure of new and novel versions. This report describes investigations of the practical limits of detection for such bioinorganic prosthetic groups, primarily by liquid secondary ion mass spectrometry (LSIMS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS), including a survey of the utility of common matrices. The lower limit of detection under favorable conditions extends to low picomole amounts. Certain derivatization techniques, such as methyl esterification and chelation to zinc, both increase the sensitivity of analyses and provide spectroscopic signatures that enable heme/cyclic tetrapyrrole ions to be identified in the presence of contaminants.