One of the major challenges for lung cancer gene therapy is to find a gene delivery vector with high efficiency and low toxicity. In this study, low-molecular-weight polyethyleneimine (PEI, 1.8 kDa) was grafted onto the side chains of Bombyx mori silk fibroin (BSF) to prepare cationized BSF (CBSF), which was used to package the plasmid DNA (pDNA) encoded by the inhibitor of growth 4 (ING4) and interleukin-24 (IL-24). FTIR and 1H-NMR spectra demonstrated that PEI was effectively coupled to the side chains of BSF by amino bonds. The results of the trinitrobenzene sulfonic acid method and zeta potential showed that the free amino group content on BSF increased from 125.1 ± 1.2 µmol/mL to 153.5 ± 2.2 µmol/mL, the isoelectric point increased from 3.68 to 8.82, and the zeta potential reversed from − 11.8 ± 0.1 mV to + 12.4 ± 0.3 mV after PEI grafting. Positively charged CBSF could package pDNA to form spherical CBSF/pDNA complexes. In vitro, human lung adenocarcinoma A549 cells and human embryonic lung fibroblast WI-38 cells were transfected with CBSF/pDNA complexes. Confocal laser scanning microscopy analysis and flow cytometry tests showed that CBSF/pDNA complexes can effectively transfect A549 cells, and the transfection efficiency was higher than that of 25 kDa PEI/pDNA complexes. CCK-8 assay results showed that CBSF/pDNA complexes significantly inhibited the proliferation of A549 cells but had no significant effect on WI-38 cells and exhibited lower cytotoxicity to WI-38 cells than 25 kDa PEI. Therefore, a gene delivery system, constructed with the low-molecular-weight PEI-modified silk fibroin protein and the ING4-IL-24 double gene coexpression plasmid has potential applications in gene therapy for lung cancer.